
CHAPTER

FIFTEEN

PLITS

The languages we have discussed so far (Distributed Processes and its kin, Ada)

use synchronous communication|both the initiator of a communication and

the recipient attend to communication. This technique limits the demand for

processing resources and simpli�es the problem of getting processes to reach

synchronous states. Asynchronous communication suggests a greater freedom|

the ability to make a request without attending to its completion. Along with this

greater freedom comes the risk of unbounded demands for system resources|the

possibility that processes will make requests faster than they can be handled.

PLITS (Programming Language In The Sky) is a language based on commu-

nication with asynchronous messages. It therefore resembles Actors (Chapter 11).

Unlike Actors, PLITS �ts the asynchronous mechanisms into an imperative syn-

tax and places a greater emphasis on explicit, interacting processes.

The important primitive objects in PLITS are messages and modules. Mod-

ules are processes. Modules communicate by sending each othermessages. PLITS

queues and sorts these messages for the receiving process. PLITS also has mech-

anisms for abstracting and protecting message information, and for selective

message reception.

PLITS is the creation of Jerome Feldman and his co-workers at the Uni-

versity of Rochester. Despite its whimsical name, there is an implementation of

PLITS. This implementation includes both a high-level language simulator and

a distributed system based on message passing and modules.

230



plits 231

Messages and Modules

Modules in PLITS communicate asynchronously. PLITS modules enjoy many

attributes of true objects: they can be dynamically created and destroyed, and

(the names of) modules are themselves a proper data type. PLITS messages

are structured association sets. Associated with each module is a queue of mes-

sages; modules exercise considerable control over the order in which messages

are accepted from the queue.

Communication depends on mutual understanding. To facilitate interprocess

communication, PLITS provides a new structured data type, the message. Mes-

sages are sets of name-value pairs. Each such pair is a slot. The name �eld of a

slot is an uninterpreted character string and is unique in that message. That is,

no name �eld occurs twice in a given message. The value �eld is an element of

one of a set of primitive unstructured domains, such as integer, real, and module.

The value �eld of a slot cannot be a structured data type, so a message cannot

be included in a message. A module declares as public the names of the message

slots it uses and the types of the slot values. A form of linkage-editing resolves

conicts on slot/types among modules.

PLITS is a foundation on which one can build one's choice of syntax. Fol-

lowing Feldman [Feldman 79], we present a version of \Pascal-PLITS"|PLITS

with a Pascal-like syntax. The \." operator of Pascal's record structure extracts

message parts, with the slot name serving as the �eld designator. Name-value

pairs (slots) are constructed with operator \�". Function message constructs a

message out of slots. Thus, the assignment

m := message (day� 135, year� 1983)

assigns to variable m a message of two slots. The value of m.day is 135.

PLITS provides many primitives for manipulating messages and modules.

The next few paragraphs list these mechanisms. The parenthesized numbers in

the text correspond to the lines in Table 15-1, which gives the syntax for each

primitive.

A collection of slots can be constructed into a message if their name �elds

are distinct (1). In PLITS, one can add a slot to a message (changing the value if

that slot name is already present) (2), remove a slot from a message (3), change

the value of a particular slot (4), and detect the presence (5), or absence (6) of

a particular slot in a message. Changing or deleting a nonexistent slot produces

an error (3, 4). Modules can manipulate only those message slots to which they

have been declared to have public access. Slot names are not a data type so no

expression evaluates to a slot name.

Messages can have slots that the recipient of that message cannot access.

That is, a module can reference only the slot names that it has declared, but

messages may contain other slots. A module can forward an entire message, even

if it has access to only a few of its slots. This facility enforces a clever form of se-



232 languages

Table 15-1 PLITS syntax extensions

1. message(..., Ni�Xi, ...) A message constructor function. It returns a message with

the given name-value pairs.

2. put N�X in M Adds or changes the slot with name N to have value X in

message M.

3. remove N from M Deletes the slot with name N from message M. This is an

error if M does not have such a slot.

4. M.N := X Changes the value of slot with name N to X in message M.

This is an error if M does not have such a slot.

5. present N in M True if M has a slot with name N.

6. absent N in M True if M does not have a slot with name N.

7. new transaction A function that returns a new transaction key.

8. send M to V Sends the message M to module V.

9. send M to V about K Sends M to V. Makes the about �eld ofM be the transaction

key K.

10. receive M Removes the next message from the message queue, and as-

signs it to M.

11. receive M about K Removes the next message from the message queue with a

transaction key of K, and assigns it to M.

12. receive M from S Removes the next message from the message queue that was

sent from module S, and assigns it to M.

13. receive M from S about K Removes the next message from the message queue that was

sent from module S with a transaction key K, and as-

signs it to M.

14. pending from S about K True if there is a message in the queue from S about K. Like

receive, the from and/or about clauses are optional.

15. new(ModType,x1,: : : ,xn) A function that generates a new module of type ModType

parameterized by x1, : : : , xn and returns its name.

16. self destruct Causes this module to stop processing and \cease to exist."

17. extant V Does the module V still exist? (Has it already executed self

destruct?)

curity, where information can be kept from certain modules, but still transmitted

by them without resorting to coding tricks or additional communications.

Di�erent models and languages have di�erent methods of organizing and

segregating a process's messages. For example, Ada's tasks have multiple entry

queues while CSP's \structured data types" require a form of pattern matching

for communication. In PLITS, request structuring can be done with transac-

tions. A transaction is a unique key. A module can generate a new transaction

at will (7); once generated, these transactions are objects of the primitive trans-

action data type. Every message contains two speci�c slots: an about slot with

a transaction key and a source slot which speci�es the module that sent the

message. If a message does not have an explicit about slot the system inserts

the default transaction key automatically. The system ensures that source slots



plits 233

are correct|that a module cannot \forge" another module's \signature" to a

message.

Modules are processes. Each module is the instantiation of a module type.

One can have arbitrarily many module instances of that type. Modules have both

program and storage. The program portion of a module can execute any of the

standard imperative (Pascal-like) control structures. Additionally, modules can

compose, decompose, send, and receive messages from other modules. Modules

therefore have all the computational power of abstract data types. The data type

module is the union of all module types.

The message-sending primitive takes a message and destination and delivers

that message to that destination (8). In sending, a process can specify a transac-

tion key (9). Send is an asynchronous (send-and-forget) operation; the sending

process continues computing after sending. Messages are ultimately routed to the

destination module's queue. This requires that there be an \unbounded" queue

of unreceived messages kept for each module. Messages from a single sender us-

ing a particular transaction key arrive in the order sent and are received in the

order sent.* Any module can send a message to any other. Messages are sent by

value.

Modules can choose to accept messages in a strictly �rst-come-�rst-served

order (10). However, there are alternative reception orders. Speci�cally, a module

can specify that a particular reception is to be the next message about a particu-

lar transaction key (11), the next message from a particular source module (12),

or the next message about a particular key and from a particular module (13).

This mechanism allows modules some control over the order in which they ac-

cept messages, but not as much control as one might imagine. A module might

want to receive the message with the highest value on some slot, to exclude

messages with a particular transaction key, or, more generally, to accept only

messages whose content satis�es some arbitrary predicate. PLITS has a primi-

tive language predicate for determining if there are any pending messages. The

pending function can be restricted to messages from a speci�c source, about a

speci�c transaction key, or both (14).

Programs can dynamically create new instances of a module type (15). Mod-

ules can terminate, but only by their own action|by executing the command

self destruct (16). The extant function is true if its argument module has not

terminated (17).

Fibonacci numbers Our �rst example, derived from Feldman [Feldman 79],

demonstrates the data structuring, message construction, coroutine, and con-

tinuation facilities of PLITS. We imagine three varieties of modules: a type of

* This contrasts with Actors (Chapter 11), where dispatch-order arrival is not guaranteed.

Dispatch-order arrival may be di�cult to implement when a distributed system allows messages

to take di�erent routes to a destination. To ensure this sequencing, modules need to track the

history of their communications with other modules.



234 languages

Fibonacci module that generates Fibonacci numbers, a Printer module that takes

a message and prints part of it, and a Seeker module that directs successive Fi-

bonacci numbers from the generator to the Printer (Figure 15-1). At each cycle,

the Seeker prompts the Fibonacci module to send the next Fibonacci number to

the Printer. The Printer prints the Fibonacci number and sends a synchroniza-

tion message back to the Seeker. The system repeats this cycle for 100 Fibonacci

numbers.

program Triangle (Output);

type

Printer = mod - - A Printer is a type of module.

public - - It has access to two message slots.

continuation : module; - - The �rst, \continuation," is the

module destination of the

synchronization pulse.

object : integer;

var

- - The second, \object," is an

integer to be printed.
m : message;

val : integer;

begin

while true do - - Loop forever, doing:

begin

receive m; - - Wait for and accept a message.

val := m.object; - - Extract the number.

writeln (output, val); - - Print it.

send m to m.continuation

end

- - Forward message m to the module

in the continuation �eld of m.
end;

Fibonacci = mod - - A Fibonacci is a module

public - - that has access to

whonext : module; - - whonext, a continuation, and

object : integer; - - object, the value to be printed

var

this, last, previous : integer; - - for Fibonacci generation

m : message;

begin

last := 0;

this := 1;

while true do

begin

receive m; - - Get the next message. Store it in m.

previous := last; - - Compute the next Fibonacci number.

last := this;

this := last + previous;



plits 235

put object� this in m; - - If there is already a slot of the form

object� x in m then replace it;

otherwise, add object� this to m.

send m to m.whonext - - Send message m to the continuation.

end

end;

Seeker = mod

const size = 100;

public

continuation, whonext: module;

var

�bgen : module;

printput : module;

m : message;

i : integer;

begin

�bgen := new(Fibonacci);

printput := new(Printer);

put continuation�me in m; - - \me" is the primitive that returns a

module's own name.
put whonext� printput in m;

for i := 1 to size do - - Direct the Fibonacci generator's

continuation to do \size" numbers.
begin

send m to �bgen;

receive m - - If this receive statement is omitted, the numbers

are still printed, but the system is no longer

synchronized. Greater concurrency results. In this

case, the continuation sent by the printer could be

omitted.
end;

end;

- - - - - - - - - - - - - - - - - - - - - main program - - - - - - - - - - - - - - - - - - -

var s: Seeker;

begin

- - Creating the Seeker module s initiates s. S creates its own Fibonacci and

Printer modules.
end.

Producer-consumer bu�er Our second example is a module that acts as a

bounded producer-consumer bu�er. This module uses transaction keys to con-

trol its acceptance of produced values and its presentation of these values to



236 languages

Figure 15-1 The Fibonacci processes.

consumers. Bu�ers are created with three parameters: size, the size of the bu�er;

accept, a transaction key that distinguishes messages that are to be stored in

the bu�er; and deliver, a transaction key for requests for values. When the bu�er

receives a request for an element, it sends the �rst item in the queue to the source

of that request.

Modules that use this bu�er must not only know the bu�er's name, but also

have been passed the appropriate transaction key. The process that creates the

bu�er must create it with two di�erent transaction keys; otherwise, the bu�er

cannot distinguish producers from consumers.

type bu�er = mod (size: integer; accept, deliver: transaction)

var

queue : array [0 .. size � 1] of message;

�rst, last : integer;

procedure intake (w: message); - - Put this message on the queue.

begin

last := (last + 1) mod size;

queue [last]:= w

end;

procedure outplace (w: message); - - Send the top of the queue to the source

of this message
begin

�rst := (�rst + 1) mod size;

send queue[�rst] to w.source

end;

- - - - - - - - - - - - - - - - - - - - - main program - - - - - - - - - - - - - - - - - - -

begin

�rst := 0;

last := 0;



plits 237

while true do

begin

if �rst = last then - - queue empty (1)

receive m about accept - - Here the bu�er is empty. We want

only messages that add to it. We

use the \about" option in receive to

restrict access.
else

if (last + 1) mod size = �rst then - - queue full (2)

receive m about deliver - - The bu�er is full. We want

only requests that consume

bu�er elements.
else

receive m; - - queue part full (3)

if m.about = accept

then intake (m)

else outplace (m)

end

end;

A program that needs a bu�er creates one with new, specifying the size of the

bu�er and transaction keys for accept and deliver. The only action the bu�er can

take when it is empty is to accept (line 1) and the only action the bu�er can

take when it is full is to deliver (line 2). When the bu�er is partially full, it can

both accept and deliver (line 3).

Readers and writers The readers-writers problem requires sharing a resource

between two classes of users: readers who can use the resource simultaneously,

and writers who require exclusive control. The task is to program a manager

that receives requests from readers and writers and schedules their access.

There are two naive ways of approaching the readers-writers problem. The

�rst is to alternate access by a reader and a writer. This solution is unsatisfactory

as it excludes concurrent reader access. The alternate extreme is to allow all

readers to read and to permit writing only when no reader wants the resource.

This scheme has the potential of starving the writers if readers make requests

too frequently. (One can give the corresponding priority to writers, threatening

the starvation of readers.)

To avoid these pitfalls we take the following approach. We alternate sets of

readers and a writer. If both readers and writers are waiting to use the resource,

the manager allows all currently waiting readers to read. When they are through,

it lets the next writer write. Of course, if only one class of process wants the

resource, the manager gives that class immediate service.

Processes must also notify the manager when they are through with the

resource. Thus, we imagine that the manager receives three varieties of mes-



238 languages

Figure 15-2 The states of the readers-writers manager.

sages: read requests, write requests, and release noti�cations. When a process

wants the resource, it sends a message with a slot of the form want�PleaseRead

or want�PleaseWrite to the manager. When it receives a reply with the slot

YouHaveIt�CanRead or YouHaveIt�CanWrite then it has the corresponding ac-

cess to the resource. When it is through, it sends a message with the slot

want�ThankYou back to the manager. Thus, we have the enumerated types

Request and Permission, declared as

type

Request = (PleaseRead, PleaseWrite, ThankYou);

Permission = (CanRead, CanWrite);

The manager keeps two queues of requests, one for readers and the other

for writers. It alternates between allowing all readers to read and letting the

next writer write. We assume that no more than numqueue reader or writer

requests are ever pending at any time. The manager keeps its queue using the

same queue discipline as the producer-consumer bu�er. The manager also keeps

a count, using, of modules currently accessing the resource. Figure 15-2 shows

the states of the manager.

type manager = mod (numqueue: integer);

queue = array [0 .. numqueue � 1] of module;

public

want : Request;

YouHaveIt : Permission;

var

using : integer - - count of current readers

m : message;



plits 239

readqueue, writequeue : queue;

read�rst, readlast : integer;

write�rst, writelast : integer;

procedure enqueue (v: module; var q: queue; var last: integer);

begin - - We assume that the queues never overow.

last := (last + 1) mod numqueue;

queue[last] := v

end;

function dequeue (var q: queue; var �rst: integer) : module;

begin - - We check for an empty queue before calling dequeue.

�rst := (�rst + 1) mod numqueue;

dequeue := q[�rst]

end;

procedure Grant (v: module; p: Permission);

begin

using := using + 1;

send message (YouHaveIt� p) to v

end;

procedure WaitToClear;

begin

- - This procedure enqueues readers and writers until

the resource is free.
while using > 0 do

begin

receive m;

if m.want = ThankYou then

using := using � 1

else

if m.want = PleaseRead then

enqueue (m.source, readqueue, readlast)

else - - must be another write request

enqueue (m.source, writequeue, writelast)

end

end;

procedure AcceptReaders;

begin

- - This procedure accepts readers until a writer

requests the resource.
repeat

receive m;

if m.want = ThankYou then using := using � 1

else

if m.want = PleaseRead then Grant (m.source, CanRead)

else



240 languages

enqueue (m.source, writequeue, writelast);

until m.want = PleaseWrite

end;

- - - - - - - - - - - - - - - - - - - - - main program - - - - - - - - - - - - - - - - - - -

begin

read�rst := 0; - - Initialize the queue pointers.

readlast := 0;

write�rst := 0;

writelast := 0;

using := 0; - - Initially, no process is using the resource.

while true do - - The manager loops forever.

begin - - The manager is a �ve-state machine.

- - If there are no writers waiting, accept all reader requests.

if write�rst = writelast then AcceptReaders;

- - Now queue readers and writers until all the readers are done

with the resource (i.e., using = 0).
WaitToClear;

- - Grant access to a writer.

Grant (dequeue (writequeue, write�rst), CanWrite);

- - Wait until that writer is done.

WaitToClear;

- - Permit all waiting readers to access the resource.

while not (read�rst = readlast) do

Grant (dequeue (readqueue, Read�rst), Canread)

- - And repeat the entire process.

end

end.

Eight queens PLITS supports dynamic creation of new modules. These new

modules have no communication restrictions. They can send messages to any

other module whose name they come to possess. We use the eight queens prob-

lem to illustrate this facility. This problem, investigated by Gauss, requires the

placement of eight queens on a chessboard such that no queen can capture any

other.* Figure 15-3 shows one solution of the eight queens problem.

One way to solve this problem is to use recursive backtracking. We note

that in any solution each row and each column must hold exactly one queen. We

place the nth queen on some row of the nth column, check to see if it can be

captured by any queen already on the board, and, if it cannot, recursively try

to place the remaining queens in the remaining columns. We repeat this process

* In chess, a queen can capture any (opposing) piece that shares the same row, column, or

diagonal with it, provided no other piece lies on the path between them.



plits 241

Figure 15-3 A solution of the eight queens problem.

until the eighth queen is successfully placed. If the queen can be captured, or

the recursive attempt fails, we move this queen to another row and repeat the

process. If we cannot place the queen on any row, we backtrack, reporting failure

to the previous column. We imagine three auxiliary functions, (1) place, which

takes a chessboard, row, and column and returns a new board, updated with a

queen at that intersection; (2) safe, which is true if its argument board has no

mutually attacking queens; and (3) printanswer, which given a board prints the

problem solution implied by that board. A pseudo-Pascal function that solves

the eight queens problem is as follows:

function solve (var brd: chessboard; col: integer) : boolean;

var

row : integer;

ans : boolean;

begin

if safe (brd, col � 1) then

if col = 9 then

begin

printanswer (brd);

solve := true

end

else

begin

row := 0;

repeat

row := row + 1;

ans := solve (place (brd, row, col), c + 1)

until (row = 8) or ans;



242 languages

solve := ans

end

else

solve := false

end;

Our technique is similar, except that instead of trying each queen placement

in turn, we try all the possible queen positions in a column concurrently. (Hence,

we do not have to report failures.) The agent of this arrangement is a module,

Queen, that receives a message with three slots: (1) a column slot that tells it

which column to try to �ll; (2) a board slot that contains a representation of those

squares of the board already �lled; and (3) a continuation slot that contains the

identity of the module that eventually prints the answers.

The action of a Queenmodule is as follows: It receives a messagem containing

a board and a column. It �rst checks to see if m.board is safe. If not, the module

terminates. If it is, the module determines if it has been asked to �ll in the ninth

(o�-the-edge-of-the-board) column. If so, it has an answer, m.board. It sends

m.board to the continuation. It then informs its requestor that it is �nished, and

terminates.

If this is not a terminal search point, then, for each row, row, the queen

module copies its board, adds a new queen at hrow, m.columni, creates a new

queen module, and sends that module the new board, asking it to solve the

next column. We assume that a chessboard is a primitive data type that can be

included in messages.

After all the generated modules of a queen module have reported comple-

tion of the task, the current module reports completion (in the slot done) and

terminates. Variable children keeps count of the module's currently computing

descendant modules.

type queen = mod;

public

column : integer;

board : chessboard;

continuation : module;

done : boolean;

var

row : integer;

m, problem : message;

children : integer;

begin

- - number of extant modules that this module has

created
receive problem;

if safe (problem.board) then

if problem.column = 9 then

send message (ans� problem.board) to problem.continuation



plits 243

else

begin

children := 8;

for row := 1 to 8 do

begin

send message (column� problem.column+1,

board� place (problem.board,

row,

problem.column),
continuation� problem.continuation)

to new (queen)
end;

while children > 0 do

begin

receive m; - - This message is for

synchronization.
children := children � 1

end

end;

send message (done� true) to problem.source;

self destruct

end;

A module with an empty board EmptyBoard and the name of a printing con-

tinuation Printing could have the 92 solutions to the eight queens problem sent

to Printing (and a termination con�rmation message sent to itself) with the

command

send message (column� 1,

board�EmptyBoard,

continuation�Printing)
to new (queen);

Perspective

PLITS is based on processes and messages. Processes are objects; they possess

program and storage and can be dynamically created and destroyed. Process

names can be passed between processes.

Processes communicate by asynchronously sending each other messages.

These messages are transmitted by call-by-value (copying). The underlying sys-

tem keeps an unbounded queue of unreceived messages for each process. The

process can check the size of its queue or treat it as several subqueues, simulta-

neously organized by sender and subject.



244 languages

Turning constant into variable is a boon to most programming activities

(though one sometimes trades e�ciency for this exibility). PLITS's treatment

of processes as a data type, to be created, referenced, and destroyed is an exam-

ple of such a generalization. PLITS correctly recognizes that an asynchronous

distributed system must treat process names as a proper data type.

Feldman and his co-workers at Rochester are in the process of implementing

a distributed system founded on the ideas of PLITS. While their short term goals

have been directed at organizing a varied collection of computers, they clearly

share many of the long-term goals of coordinated computing.

PROBLEMS

15-1 If PLITS had not provided the primitives self destruct and extant, how could a pro-

grammer achieve the same e�ect?

15-2 How many elements can �t into the bounded bu�er before it is full?

15-3 The program for the readers-writers problem assumed that no more than a constant

number (numqueue) of reader or writer requests would ever be pending. Modify that program

to remove this restriction. (Hint: Use transaction keys.)

15-4 Similarly, the readers-writers program used two internal, �nite queues. Modify that

program to use the message queue instead.

15-5 Generalize the eight queens problem to the n-queens problem over an n�n chessboard.

15-6 The sorcerer's apprentice: The eight queens program generates all solutions to the prob-

lem. Modify the program to stop (reasonably soon) after the �rst solution has been found.

(Muchnick)

REFERENCES

[Feldman 79] Feldman, J. A., \High Level Programming for Distributed Computing," CACM,

vol. 22, no. 6 (June 1979), pp. 353{368. This paper describes PLITS. It also discusses

implementation issues for PLITS-like systems and several pragmatic issues (such as typing,

assertions, and veri�cation) not speci�c to PLITS, but of concern to the general problem

of programming.

[Wirth 76] Wirth, N., Algorithms + Data Structures = Programs, Prentice-Hall, Englewood

Cli�s, New Jersey (1976). This book is a good introduction to programming style and

data structures. On pages 143{147, Wirth presents an excellent description of the eight

queens problem and a Pascal program that solves it.


